The Curvature of a Single Contraction Operator on a Hilbert Space ∗

نویسنده

  • Stephen Parrott
چکیده

This note studies Arveson’s curvature invariant for d-contractions T = (T1, T2, . . . , Td) for the special case d = 1, referring to a single contraction operator T on a Hilbert space. It establishes a formula which gives an easy-to-understand meaning for the curvature of a single contraction. The formula is applied to give an example of an operator with nonintegral curvature. Under the additional hypothesis that the single contraction T be “pure”, we show that its curvature K(T ) is given by K(T ) = −index (T ) := −(dimker (T ) − dim coker (T )). 1 The curvature of a single operator This note studies Arveson’s curvature invariant for d-contractions T = (T1, T2, . . . , Td) for the special case d = 1, referring to a single contraction operator T on a Hilbert space. It establishes a formula which gives an easy-to-understand meaning for the curvature of a single contraction. The formula is applied to give an example of an operator with nonintegral curvature. Under the additional hypothesis that the single contraction T be “pure”, we show that its curvatureK(T ) (defined below) is given by K(T ) = −index (T ) := −(dim ker (T )− dim coker (T )). Let T be a contraction operator on a Hilbert spaceH , and ∆T := √ 1− TT ∗. Assume that ∆T has finite rank. Then the curvature K(T ) of T (our shorthand AMS Subject Classification: 47A13 (Primary); 47A20 (Secondary).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

0 Note on the Curvature and Index of Almost Unitary Contraction Operator ∗

In the recent preprint [1] S. Parrott proves the equality between the Arveson's curvature and the Fredholm index of a " pure " contraction with finite defect numbers. In the present note one derives a similar formula in the " non-pure " case. The notions of d-contraction T = (T 1 , T 2 ,. .. , T d) and its curvature was introduced by W. Arveson in a series of papers (see [2], [3], and [4]). In ...

متن کامل

Note on the Curvature and Index of Almost Unitary Contraction Operator *

In the recent preprint [1] S. Parrott proves the equality between the Arveson's curvature and the Fredholm index of a " pure " contraction with finite defect numbers. In the present note one derives a similar formula in the " non-pure " case. The notions of d-contraction T = (T 1 , T 2 ,. .. , T d) and its curvature was introduced by W. Arveson in a series of papers (see [2], [3], and [4]). In ...

متن کامل

A Note on Quadratic Maps for Hilbert Space Operators

In this paper, we introduce the notion of sesquilinear map on Β(H) . Based on this notion, we define the quadratic map, which is the generalization of positive linear map. With the help of this concept, we prove several well-known equality and inequality...  

متن کامل

Operator frame for $End_{mathcal{A}}^{ast}(mathcal{H})$

‎Frames generalize orthonormal bases and allow representation of all the elements of the space‎. ‎Frames play significant role in signal and image processing‎, ‎which leads to many applications in informatics‎, ‎engineering‎, ‎medicine‎, ‎and probability‎. ‎In this paper‎, ‎we introduce the concepts of operator frame for the space $End_{mathcal{A}}^{ast}(mathcal{H})$ of all adjointable operator...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000